4 research outputs found

    ANALYSIS OF PART CONSOLIDATION TECHNIQUES FOR AUTOMOTIVE BODY IN WHITE PANELS BASED ON ADVANCED SHEET METAL FORMING TECHNOLOGIES

    Get PDF
    The automotive industry is looking to move from mass production to mass customization in order to manufacture and sell a variety of products in different markets on a global scale. This requires a robust and cost effective manufacturing system which would help design new products in the shortest possible lead time. This thesis tries to investigate the current sheet metal forming process for body in white, identify the limitations and propose an alternative which would help the industry cut down product lead time and costs. Decision making tools are used to identify the technical requirements of a BIW manufacturing system and optimize the same. Part consolidation techniques are studied in detail and the various means to achieve them are investigated. Industrial origami¨ is proposed as an alternative to automotive stamping and a means to achieve part consolidation. Origami joints and their design features were modeled using cad tools and their load bearing and strength characteristics are compared to that of stamped joints using finite element analysis simulations. A bill of materials of a small sedan is constructed to identify the opportunities for part consolidation and process substitution of stamping using origami

    Comparative Proteomic Analysis of Different Isolates of Fusarium oxysporum f.sp. lycopersici to Exploit the Differentially Expressed Proteins Responsible for Virulence on Tomato Plants

    No full text
    The vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici is an important soil borne pathogen causes severe yield loss. The molecular characterization and their interaction with its host is necessary to develop a protection strategy. 20 isolates of F. oxysporum f.sp. lycopersici (FOL) were isolated from wilt infected tomato plants across Tamil Nadu. They were subjected to cultural, morphological, molecular and virulence studies. The results revealed that all the isolates produced both micro and macro conidia with different size, number of cells. The colors of the culture and growth pattern were also varied. In addition, chlamydospores were observed terminally and intercalary. The PCR analysis with F. oxysporum species-specific primer significantly amplified an amplicon of 600 bp fragment in all the isolates. Based on the above characters and pathogenicity, isolate FOL-8 was considered as virulent and FOL-20 was considered as least virulent. Proteomics strategy was adopted to determine the virulence factors between the isolates of FOL-8 and FOL-20. The 2D analyses have showed the differential expression of 17 different proteins. Among them, three proteins were down regulated and 14 proteins were significantly up regulated in FOL-8 than FOL-20 isolate. Among the 17 proteins, 10 distinct spots were analyzed by MALDI-TOF. The functions of the analyzed proteins, suggested that they were involved in pathogenicity, symptom expression and disease development, sporulation, growth, and higher penetration rate on tomato root tissue. Overall, these experiments proves the role of proteome in pathogenicity of F. oxysporum f.sp. lycopersici in tomato and unravels the mechanism behinds the virulence of the pathogen in causing wilt disease

    Complete Genome Sequence Analysis of <i>Bacillus subtilis</i> Bbv57, a Promising Biocontrol Agent against Phytopathogens

    No full text
    Plant growth-promoting rhizobacteria (PGPR) are a group of root-associated beneficial bacteria emerging as one of the powerful agents in sustainable plant disease management. Among the PGPR, Bacillus sp. has become a popular biocontrol agent for controlling pests and the diseases of several crops of agricultural and horticultural importance. Understanding the molecular basis of the plant growth-promoting and biocontrol abilities of Bacillus spp. will allow us to develop multifunctional microbial consortia for sustainable agriculture. In our study, we attempted to unravel the genome complexity of the potential biocontrol agent Bacillus subtilis Bbv57 (isolated from the betelvine’s rhizosphere), available at TNAU, Coimbatore. A WGS analysis generated 26 million reads, and a de novo assembly resulted in the generation of 4,302,465 bp genome of Bacillus subtilis Bbv57 containing 4363 coding sequences (CDS), of which 4281 were functionally annotated. An analysis of 16S rRNA revealed its 100% identity to Bacillus subtilis IAM 12118. A detailed data analysis identified the presence of >100 CAZymes and nine gene clusters involved in the production of secondary metabolites that exhibited antimicrobial properties. Further, Bbv57 was found to harbor 282 unique genes in comparison with 19 other Bacillus strains, requiring further exploration

    Severity and mortality associated with COVID-19 among children hospitalised in tertiary care centres in India: a cohort studyResearch in context

    No full text
    Summary: Background: It is critical to identify high-risk groups among children with COVID-19 from low-income and middle-income countries (LMICs) to facilitate the optimum use of health system resources. The study aims to describe the severity and mortality of different clinical phenotypes of COVID-19 in a large cohort of children admitted to tertiary care hospitals in India. Methods: Children aged 0–19 years with evidence of SARS-CoV-2 infection (real time polymerase chain reaction or rapid antigen test positive) or exposure (anti-SARS-CoV-2 antibody, or history of contact with SARS-CoV-2) were enrolled in the study, between January 2021 and March 2022 across five tertiary hospitals in India. All study participants enrolled prospectively and retrospectively were followed up for three months after discharge. COVID-19 was classified into severe (Multisystem Inflammatory Syndrome in Children (MIS-C), severe acute COVID-19, ‘unclassified’) or non-severe disease. The mortality rates were estimated in different phenotypes. Findings: Among 2468 eligible children enrolled, 2148 were hospitalised. Signs of illness were present in 1688 (79%) children with 1090 (65%) having severe disease. High mortality was reported in MIS-C (18.6%), severe acute COVID-19 (13.3%) and the unclassified severe COVID-19 disease (12.3%). Mortality remained high (17.5%) when modified MIS-C criteria was used. Non-severe COVID-19 disease had 14.1% mortality when associated with comorbidity. Interpretation: Our findings have important public health implications for low resource settings. The high mortality underscores the need for better preparedness for timely diagnosis and management of COVID-19. Children with associated comorbidity or coinfections are a vulnerable group and need special attention. MIS-C requires context specific diagnostic criteria for low resource settings. It is important to evaluate the clinical, epidemiological and health system-related risk factors associated with severe COVID-19 and mortality in children from LMICs. Funding: Department of Biotechnology, Govt of India and Department of Maternal, Child and Adolescent Health and Aging, WHO, Geneva, Switzerland
    corecore